Abstract
The present study examined the effect of heavy metals (Mn2+ and Co2+) and hydrogen peroxide (H2O2) on biomass, lipid content and lipid productivity of Chlorella vulgaris. Manganese chloride at 2 μM, 10 μM and 12 μM increased the lipid content significantly by 14 %, 16 % and 15 %, respectively, above the corresponding controls after 8 days of incubation, resulting in a significant (18 %) increase in lipid productivity with respect to the control at 12 μM manganese chloride. All applied concentrations of cobalt nitrate increased the lipid content up to 25 % more than the corresponding controls. The optimum concentration of cobalt nitrate for high lipid productivity was 2.5 μM, which resulted in a 22 % increase in lipid productivity over the control. Furthermore, lipid productivity was increased significantly by 29 % over the control when 4 mM hydrogen peroxide was included in the culture medium. Additionally, the proportion of total saturated fatty acids extracted from Chlorella vulgaris treated with 12 μM manganese chloride, 2.5 μM cobalt nitrate and 4 mM hydrogen peroxide ranged between 40 % and 45 % of total fatty acids. The present study concluded that heavy metals and oxidative stress efficiently increased the lipid productivity of the promising biodiesel feedstock chlorophyte Chlorella vulgaris. In addition, the type and proportion of individual fatty acids meet the biodiesel standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.