Abstract

Effect of the third alloying element Mn on Cu-precipitation was studied in a binary Fe-1.3% Cu alloy. Precipitation in both the alloys was investigated after homogenization treatment and subsequent artificial aging. Advanced characterization techniques such as Positron Annihilation Spectroscopy (PAS) and Tomographic Atom Probe (TAP) were used to establish the chemical composition, morphology, size and number density of the Cu-rich phases. Combined results of PAS and TAP were particularly useful in order to follow the Cu precipitation in the binary alloy. At short aging times, addition of Mn significantly increased the kinetics of hardening while its effect on the magnitude of precipitation strengthening is only marginal. It further increases the over-aging kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.