Abstract
Nickel-zinc ferrite nanoparticles with suitable chemical modifications by Mn or Co substitutions for Zn as two systems (namely, Ni–Zn–Mn and Ni–Zn–Co) were synthesized by sol-gel autocombustion method. X-ray diffraction measurements on the synthesized nanoparticles confirm that the samples attain single phase cubic spinel structures only. The powders were then used to obtain pellets in desired dimensions by employing usual ceramic procedure for carrying out measurements of resistivity and dielectric properties. The variations of dc resistivity as a function of composition and temperature, and the corresponding variation of activation energies for both the systems are presented and discussed. Also, the results of dielectric constant as a function of substituent concentration, dielectric dispersion and dielectric loss tangent are discussed. Effect of Mn/Co substitutions in Ni–Zn ferrites and possible mechanisms responsible for variations in resistivity and dielectric properties of both the ferrite systems have been evolved independently. Also, comparison of the trends between the dielectric constant and the resistivity with substituents’ concentration and their inter-relation with conduction mechanisms has been thoroughly analyzed for both the ferrite systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.