Abstract

Sustainability of concrete can be improved by using large volume of fly ash as a replacement of cement and by ensuring enhanced durability of concrete. Durability of concrete containing large volume of class F fly ash is dependent on the design of mixture proportions. This paper presents an experimental study on the effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing large volume of local class F fly ash. Concrete mixtures were designed with and without adjustments in the water to binder ratio (w/b) and the total binder content to take into account the incorporation of fly ash up to 40% of total binder. Concretes, in which the mixture proportions were adjusted for fly ash inclusion achieved equivalent strength of the control concrete and showed enhanced properties of drying shrinkage, sorptivity, water permeability and chloride penetration as compared to the control concrete. The improvement of durability properties was less significant when no adjustments were made to the w/b ratio and total binder content. The results show the necessity of the adjustments in mixture proportions of concrete to achieve improved durability properties when using class F fly ash as a cement replacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.