Abstract

ABSTRACTIn order to improve the performance of blast furnace ironmaking when using the high Al2O3 iron ore, the technology of mixing charge of high reactive semicoke nut with ferrous burden was proposed and systematically investigated at laboratory scale in the present paper. The CO2 gasification activation energy of semicoke ranged from 136.5 to 150.3 kJ mol−1, which was lower than that of the traditional coke. At the temperature of 1200°C, the reduction degree of ferrous burden increased a little with the addition of semicoke nut and the consumption ratio of semicoke was 14.0 wt-% under the simulated blast furnace ironmaking condition. The mixing charge of semicoke could obviously reduce the softening beginning temperature, increase the melting temperature and improve the permeability compared with the standard and traditional coke mixing charge samples. During the total softening and melting process, about 90 wt-% of the semicoke nut and 45 wt-% of the traditional coke nut were consumed, respectively. The experiment results indicated that the mixing charge of high reactive semicoke nut could obviously improve the performance of blast furnace ironmaking when using high Al2O3 ferrous burden and the semicoke was more effective than traditional coke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call