Abstract

In recent years, some studies have reported that co-culturing green algae and yeast improve lipid and biomass concentration. In this study, a co-culture of the oleaginous yeast Rhodotorula glutinis and the microalgae Chlorella vulgaris was consequently conducted with inoculation of microalga and yeast in growth and stationary phases, respectively. For the first time, the expression of two pivotal enzymes in fatty acids synthetic pathway, acetyl-CoA carboxylase and Glycerol-3-phosphate acyltransferase, was evaluated. To evaluate the synergistic impacts of the mixed culture on the enzymes expression, several co-culture models were designed, including the use of different ratio of microalgae to yeast or the use of residual cell-free medium of yeast; a positive impact on enzymes overexpression was shown in the case of the co-culture of the two microorganisms, and when the remaining cell-free medium of yeast was added to the microalgal culture. The results of invitro co-culture demonstrated increased 6- and 5-fold of nervonic acid (C24:1) and behenic acid (C22:0) concentrations, respectively, in 2:1 microalgae to yeast co-culture as compared to the monoculture batches. Addition of yeast residual cell-free medium in the 2:1 ratio to the microalgal culture enhanced 9 and 6 times nervonic acid (C24:1) and behenic acid (C22:0) amounts, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call