Abstract

The aim of this study was to explore the effect of miR-26a-5p targeting and regulating ADAM17 gene on myocardial cells in hypoxic model. Myocardial cells from 1 day old Sprague-Dawley rats were isolated and cultured for 3 days, and were used for experiment. The hypoxia model of myocardial cells was established after cell grouping transfection. The targeting relationship between miR-26a-5p and ADAM17 was verified by bioinformatics website prediction and double luciferase report experiment. The double luciferase report experiment showed that miR-26a-5p had a targeted relationship with ADAM17, and miR-26a-5p could target and bind ADAM17, down-regulate its expression, and the transfection efficiency of each group was good (P < 0.05). After overexpression of miR-26a-5p, cell activity was increased (P < 0.05), apoptosis was decreased (P < 0.05), and the expression levels of TNF-α, IL-1β and IL-6 were significantly decreased (all P < 0.05). The release of creatine kinase-MB and the expression level of malondialdehyde were significantly decreased (both P < 0.05), and the expression level of superoxide dismutase was significantly increased (all P < 0.05). After overexpression of ADAM17, the results were reversed (all P < 0.05). MiR-26a-5p could target and regulate ADAM17, reduce the apoptosis of myocardial cells and the expression of inflammatory factors in acute myocardial infarction, and reduce the occurrence of oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call