Abstract

BackgroundA challenging new branch of research related to aging-associated diseases is the identification of miRNAs capable of modulating the senescence-associated secretory phenotype (SASP) which characterizes senescent cells and contributes to driving inflammation.MethodsMesenchymal stem cells (MSC) from human umbilical cord stroma were stable modified using lentivirus transduction to inhibit miR-21-5p and shotgun proteomic analysis was performed in the MSC-derived extracellular vesicles (EV) to check the effect of miR-21 inhibition in their protein cargo. Besides, we studied the paracrine effect of those modified extracellular vesicles and also their effect on SASP.ResultsSyndecan-1 (SDC1) was the most decreased protein in MSC-miR21−-derived EV, and it was involved in inflammation and EV production. MSC-miR21−-derived EV were found to produce a statistically significant inhibitory effect on SASP and inflammaging markers expression in receptor cells, and in the opposite way, these receptor cells increased their SASP and inflammaging expression statistically significantly when treated with MSC-miR-21+-derived EV.ConclusionThis work demonstrates the importance of miR-21 in inflammaging and its role in SASP through SDC1.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.