Abstract

The application of a circulating miR-195 inhibitor could be a helping factor in the in vitro model of human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs). Previously, microRNA-195 (miR-195) expression has been reported to be a negative factor for myogenesis. The study aimed to obtain anti-apoptotic and anti-aging effects in in vitro cultured myoblasts and to improve their ability to form myotubes by suppressing miR-195 expression. Human wild-type (WT) SkMDS/PC cells incubated with control (nonspecific) miRNA inhibitor and miR-195-inhibited SkMDS/PCs were studied. Functional assays (myotube formation and cell aging), antioxidant, and myogenic gene expression analyses were performed at two time points, at the seventh and eleventh cell passages. Myotube formation was found to be almost 2-fold higher in the miR-195-inhibited SkMDS/PCs population (P < 0.05) compared to WT cells. miR-195 inhibition did not appear to affect cell aging or rejuvenate human SkMDS/PCs. Antioxidant (SOD3 and FOXO) gene expression was augmented in the miR-195-inhibited SkMDS/PCs population, but no positive effect on the remaining antioxidant genes (SOD1, SOD2, and catalase) was observed. A significant increase in MyoD gene expression with a concomitant decrease in MyoG (P < 0.05) was further documented in miR-195- -inhibited SkMDS/PCs compared to WT cells (the eleventh cell passage). The performed studies may lead to the preconditioning of myogenic stem cells to extend their potential for pro-regenerative activity. The miR-195 inhibitor may serve as a conditioning factor augmenting selective antioxidant gene expression and proliferative potential of SkMDS/PCs, but it does not have an impact on cell aging and/ or apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.