Abstract

In the present work, Fe88Zr4Pr3B4Ce1 metallic glass (MG) was successfully prepared by minor Ce substitution for Pr, and compared with Fe88Zr4Pr4B4 MG in terms of glass forming ability (GFA), magnetic and magnetocaloric properties. The GFA, Tc and the maximum magnetic entropy change (−ΔSmpeak) of the Fe88Zr4Pr3B4Ce1 MG were found to decrease slightly. At the same time, the possible interaction mechanism of minor Ce replacing Pr was also explained. The critical exponents (β, γ and n) obtained by the Kouvel–Fisher method indicate that Fe88Zr4Pr3B4Ce1 MG near Tc exhibits typical magnetocaloric behavior of fully amorphous alloys. The considerable maximum magnetic entropy change (−ΔSmpeak = 3.84 J/(kg × K) under 5 T) near its Curie temperature (Tc = 314 K) as well as RCP (~ 646.3 J/kg under 5 T) make the Fe88Zr4Pr3B4Ce1 MG a better candidate as a component of the amorphous hybrids that exhibit table-shape magnetic entropy change profiles within the operation temperature interval of a magnetic refrigerator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.