Abstract
Coastal estuary area is an important sink for the land-based or/and atmosphere-based nutrients, and is suffering a serious destruction derived from the intensifying human activities, which subsequently threatens the marine environment. Therefore, increasing soil retention capacities of nitrogen (N) and phosphorous (P) and reducing their leaching amount to sea water become a critical issue needed to be urgently addressed. In this study, a 38-day incubation and leaching experiment was conducted with two contrasting soils taken from the coastal estuary area, including the wetland and agricultural soils. Four kinds of biochars (BC), including one pure reed straw BC (BC0), and three mineral loaded BCs produced through the co-pyrolysis of reed straw with CaO (BCCa), MgO (BCMg), and shell powder (BCSP), respectively, were used to explore their effects on the leaching performances of nitrate-N and phosphate-P. The results demonstrated that the application of mineral loaded BCs could generally decrease the leaching amount of phosphate-P, while showed little effect on the nitrate-N leaching, compared to the controls. The positive improvement in soil nutrient retention capacity, mostly contributed by the increased adsorption on BC surface and into aperture, was suggested as the main mechanism for the decrease in nitrate-N and phosphate-P leaching. Compared to the agricultural soil, high clay content in the wetland soil could weaken the reduction potential in leaching losses of nitrate-N and phosphate-P derived from the newly introduced minerals with BC application. Furthermore, our results also indicated that the mineral loaded BCs may slow down the conversion rate of nutrients from organic forms to inorganic forms supported by the decreased enzymatic activity, which would be beneficial to the long term retention of nutrients in soil. Overall, based on the findings in the present study, the BCMg and Ca loaded BCs were respectively recommended for the wetland and agricultural soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.