Abstract

Soils are a hotspot for the emergence and spread of antibiotic resistance. The effects of agrochemical treatments on the bacterial community of agricultural soils and the content of antibiotic-resistance genes (ARGs) were studied. Treatments included the following: control, mineral fertilizers (NPKs), pesticides, and the combined treatment of soils under soya (Glycine max), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum). Bacterial community taxonomic composition was studied using 16S rRNA gene sequencing. The content of 10 ARGs and 3 integron genes (intI1, intI2, intI3) was determined using quantitative real-time PCR. The results showed that the treatments had little effect on the taxonomic composition and diversity of the soil bacterial community. The most significant factors determining differences in the microbial community were sampling time and soil physico-chemical parameters. A significant role of the bacterial community in ARG distribution in soils was demonstrated. Representatives of the Pseudomonas, Bacillus, Sphingomonas, Arthrobacter genera, and the Nocardioidaceae and Micrococcaceae families were likely ARG hosts. The presence of integron genes of all three classes was detected, the most numerous being intI3. This work provides important information on the role of agricultural soils in ARG transfer, and the findings may be useful for sustainable and safe agricultural development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call