Abstract

Titanium (Ti)-based alloys with only a β-phase have attracted academic and industrial interest for orthopedic application, due to their close properties to those of tissues. The current study aims to investigate the effect of milling time (2 h, 6 h, 12 h and 18 h) on the nanostructured ternary alloy Ti-25Nb-25Zr prepared by high energy milling, on its structural, physical and tribological behaviors. The alloys’ characteristics such as relative density/porosity, surface roughness, were evaluated using XRD, SEM, surface profilometry, and microdurometer, respectively. The tribological characterization was done using an oscillating tribometer under wet conditions, simulating the human body environment. Results showed that the crystallite and mean pore size reduced with increasing milling time, with the smallest values of 26 nm and 40 µm, respectively after 18 h. Structural characterization shows that the amount of the β-Ti phase increased with increasing milling time, resulting in spherical morphology and texturing of the synthesized alloys. The milled alloys' structural evolution and morphological changes were sensitive to their milling times. Also, the relative density, Young’s modulus and hardness, increased due to grain size decreased with increasing milling time. Tribological results showed that the effect of milling has a significant effect on both nanomaterial formation and friction-wear behavior of the alloys. The results showed that, friction coefficient and wear rate significantly decreased due to the increased formation of protective films such as TiO2, Nb2O5 and ZrO2 phases. The wear mechanism of the Ti-25Zr-25Nb system was dominated by abrasion wear accompanied by adhesion wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call