Abstract

Mechanical milling is widely recognized as the best method to prepare nano-structured magnesium based hydrogen storage materials. The composites La7Sm3Mg80Ni10 + 5 wt% TiO2 (named La7Sm3Mg80Ni10–5TiO2) whose structures are nano-crystal and amorphous accompanied by great hydrogen absorption and desorption properties were fabricated by mechanical milling. The research focuses on the effect of milling duration on the thermodynamics and dynamics. The instruments of researching the gaseous hydrogen storing performances include Sievert apparatus, DSC and TGA. The calculation of dehydrogenation activation energy was realized by applying Arrhenius and Kissinger formulas. The calculation results show the specimen milled for 10 h exhibits the optimal activation performance and hydrogenation and dehydrogenation kinetics. Extending or shrinking the milling duration will lead to the degradation of hydrogen storage performances. The as-milled (10 h) alloy at the full activated state can absorb 4 wt% hydrogen in 87 s at 473 K and 3 MPa and release 3 wt% H2 in 288 s at 573 K and 1 × 10−4 MPa. The changed milling durations have little impact on the thermodynamic properties of experimental samples and the enthalpy change (ΔH) of the alloy milled for 10 h is 74.23 kJ/mol. Moreover, it is found that the as-milled (10 h) alloy displays the minimum apparent activation energy of dehydrogenation (59.1 kJ/mol), suggesting the optimal hydrogen storing property of the as-milled (10 h) alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call