Abstract

Composites materials consisting of pure copper reinforced with 1 vol.% of NbC were prepared by the powder metallurgy route to determine the influence of the milling process on the mechanical and electrical properties. For comparative purpose different milling times at four different rotational speeds were used. The resulting powders were consolidated by hot uniaxial pressing under 90MPa for 2h at 923K to obtain materials with a fine microstructure without residual porosity. It was found that the microstructure and properties of composite materials could be principally related to the amount of Fe, Cr, C and O incorporated as impurities during the milling process. Therefore, the rotational speeds used for milling has an important influence on the properties of the final product. A lower energy-ball milling is accompanied by a smaller amount of impurities (Fe, C and O) incorporated during milling. Composites materials combine electrical conductivity above 40% IACS with high strength. A detailed microstructural analysis by scanning and transmission electron microscopy and X ray diffraction showed that these properties are related not only to NbC particles, but also to the presence of very fine particles of carbides and oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.