Abstract

Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H 2O 2 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H 2O 2 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60–90°C and 0–200 mM H 2O 2. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2>0.95, p<0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H 2O 2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H 2O 2 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0°C, 74.2 mM H 2O 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.