Abstract
Polyvinyl alcohol (PVA), possessing a strong ability to form hydrogels, has been widely used for various pharmaceutical and biomedical applications. In particular, the use of PVA-PEG in the form of theta gels for altered cartilage treatment has attracted an enormous amount of attention in the last 20 years. In this paper, we prepared 42 PVA-PEG in the form of theta gels at room temperature in an aqueous environment, testing the crystallization occurrence at basic pH (10 or 12). Using a statistical approach, the effect of PEG molecular weight, PVA molecular weight and alkaline pH values on water content and mechanical performance was evaluated. The used procedure permitted the theta gels to maintain swelling properties comparable to those of human cartilage, from 60% to 85%, with both polymers having the same influence. PEG MW mainly affected the hydrophilic properties, whereas the thermal properties were mostly influenced by the PVA. The shear and compression mechanical behavior of the produced materials were affected by both the polymers' MWs. The sample obtained using PVA 125 kDa with PEG 20 kDa as a porogen appeared to be the most suitable one for cartilage disease treatment, as it had an equilibrium shear modulus in the range of 50-250 kPa, close to that of native articular cartilage, as well as optimal mechanical response under compression along the entire analyzed frequency range with a mean value of 0.12 MPa and a coefficient of friction (COF) which remained under 0.10 for all the tested sliding speeds (mm/s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.