Abstract

The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120s, and PAA dosage of 0.25g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.