Abstract

The microstructure of the oxide layer of a β-solidifying γ-TiAl alloy (Ti-43.2Al-1.9V-1.1Nb-1.0Zr-0.2Gd-0.2B) after nitrogen ion implantation was studied after cyclic oxidation tests at 800 °C. Oxidation resulted in the formation of the continuous oxide scale, consisting of thin inner and outer TiO2, dense Al2O3 and mixed Al2O3 + TiO2 layers. It was revealed that the nitrogen ion implantation considerably inhibited the growth of the oxide scale, internal oxidation and Al-depleted zones. Thick Al-depleted zones and a mixture of Al2O3 and TiO2 were formed along the colony boundaries. Tooth-shaped Al-depleted zones propagated along the lamella boundaries. In addition, the presence of Gd-rich particles in the oxide scale promoted the formation of Al2O3 particles in surrounding areas and increased the depth of the oxide scale around.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call