Abstract

In literature, the ionic conductivity of solid electrolytes is often discussed as one of the most important properties of an all solid-state battery. However, the behavior of the electrolyte inside a composite electrode and the influence of electrode structure on the ionic conductivity is neglected in most of the studies. In this work we manufactured model electrodes with clearly defined structures by using electrochemically inert glass particles as model active material with six different volume fractions and four different particle sizes, respectively. Higher volume fractions and smaller particles led to a decrease of ionic conductivity down to two decades due to emerging pores and a rise of tortuosity. Beneath the ionic conductivity the interface resistance between Li-metal and model electrodes was investigated, clearly indicating that high volume fractions of small active materials led to higher interface resistances. Finally, a model is introduced to predict the effective ionic conductivity of a solid electrolyte within an all solid-state battery electrode by just knowing the volume fraction of active material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.