Abstract

In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe–0.28C–1.55Mn–2.06Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.