Abstract

This work mainly studied the influence of the microstructure and crystallographic texture on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys with different Y contents. The samples were machined from thick plates obtained by extrusion and the tensile tests were performed parallel to extrusion and transverse directions, respectively. Microstructure observation firmly indicated that the grain-refining effect of icosahedral quasicrystal phase (I-phase) was superior to that of the cubic W-phase. In addition, the tensile results indicated that I-phase could effectively improve the strength (yield strength and ultimate tensile strength) of alloys. However, strengthening effect of W-phase was lower. With the quantity of W-phase increasing, the strength of alloys was degraded. It also showed that the alloys were mechanically anisotropic, i.e. the longitudinal strength was higher than that of the transverse direction. However, the ductility of the transverse direction was superior. With the increase of Mg–Zn–Y phases, the anisotropy of the ultimate tensile strength (UTS) between the longitudinal and transverse directions increased remarkably. SEM fracture observations showed that the fractures of the TD samples were characterized by the typical “woody fracture”, with a large amount of cracked Mg–Zn–Y particles (I-phase and W-phase) distributed at the bottom of dimples. With Y content increasing, the average spacing of the zonal distributed Mg–Zn–Y particles on the fracture surface became narrow, which influenced the transverse mechanical properties greatly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call