Abstract

The influence of lamellar or bi-modal microstructures on high temperature LCF behavior in Ti-1100 was investigated at 600°C. Under various creep-fatigue conditions, as the hold-time increases, the fatigue lives of specimens of both lamellar and bi-modal structures reduce compared with those of continuous cycling of the same specimens. It is understood that longer hold-time results in severe creep damage accumulation due to stress relaxation, leading to reduced fatigue life. Specimens with a bi-modal structure show about double the values of relaxed stress normalized with tensile peak stress of specimens with lamellar structure in the same test conditions, resulting in a higher reduction rate of fatigue life. In addition, as hold-time extends, the difference in total hysteresis loop energy between lamellar and bi-modal structures becomes smaller. Therefore, it can be said that creep damage resulting from stress relaxation during hold-time is more detrimental in bi-modal than in lamellar structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.