Abstract
Abstract This paper investigates the effects of microstructure and hardness on non-proportional cyclic hardening of metallic materials. Constant amplitude in-phase and 90° out-of-phase strain-controlled axial-torsion cyclic tests were conducted to evaluate the hardening. Tubular specimens made from 1050 steel in normalized, quenched and tempered, and induction hardened conditions as well as 304L stainless steel were used to study the effect of microstructure on multiaxial cyclic deformation. Reductions in the non-proportional cyclic hardening were observed as the microstructure of 1050 steel changed form pearlitic–ferritic with lower hardness to tempered martensite with higher hardness. Significant non-proportional cyclic hardening was also observed for 304L stainless steel with austenitic microstructure. Multiaxial data generated in this study as well as multiaxial deformation data of several materials from literature suggest non-proportional cyclic hardening can be related to uniaxial cyclic hardening. Non-proportional hardening coefficients predicted from a proposed equation based on this observation were found to be in very good agreement with the experimental values in this study and from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.