Abstract

AbstractInterface reinforcement brought about by addition of a γ-amino-propyl-triethoxy-silane (γ-APS) adhesion promoter layer between a silicon wafer and a spun-on benzocyclobutene polymer (BCB) is investigated. Combining cross-sectional TEM and XPS, crack growth is shown to occur along the γ-APS/BCB interface. Ion etching and in-situ XPS are further employed to study chain orientation and chemical bonding variations through the silane layer. A tendency of the amide group to orient away from the wafer is documented and Si-O-Si siloxane bonding at the γ- APS/SiO2 interface is hypothesized as an important mechanism for adhesion strength enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call