Abstract

Hydrogen is a main factor in cold cracking or hydrogen-induced cracking. The most crack susceptible region of a steel welded joint is the heat affected zone (HAZ). Formulation and functional-analytical solution of the one-dimensional problem of hydrogen diffusion in an inhomogeneous butt-welded joint taking into account weld and joint dimensions as well as hydrogen diffusion coefficients and solubilities are presented. It is shown that the peak hydrogen concentration in the HAZ of inhomogeneous joints varies in direct proportion to the initial hydrogen concentration in the weld metal. Peak hydrogen concentration is inversely proportional to the ratio of hydrogen solubilities in the weld and HAZ and the square root of diffusion coefficient ratio of the HAZ and weld. The peak hydrogen concentration in the HAZ can exceed 80% of the initial concentration in the weld if martensitic steel is welded using low-carbon low-alloy welding consumables. Utilization of austenitic consumables leads to reduction in hydrogen concentration in the HAZ by 75–85% in comparison with non-austenitic consumables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.