Abstract

Microscale calcium–silicate–hydrate (C–S–H) is easily accessible and readily storable, enabling a cleaner production process of cement-waste grinding and simple chemical synthesis technology. However, the temperature effects of microscale C–S–H require further exploration. In this study, we evaluated the impact of microscale C–S–H admixture on the properties of Portland cement at different curing temperatures. Microscale C–S–H can not only increase the early strength of cement pastes, but also achieve high strength in the long term. Adding microscale C–S–H to cement can effectively reduce the apparent activation energy Ea of hydration products and accelerate the reaction of C3S and C2S with water and form more hydration products. At a curing temperature of 10 °C, the microscale C–S–H increased the 1 d compressive strength by 70.0% and shortened the hydration induction period by 1.2 h. Microscale C–S–H also increased the 12 h hydration degree by 38.1%. Microscale C–S–H promoted the formation of CH and xonotlite-like C–S–H and changed the composition of hydrates, although the effects diminished with increasing curing temperature. This paper offers theoretical and fundamental data on the usage of microscale C–S–H as an admixture in cement-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call