Abstract

Microplastics have emerged as a significant pollutant in terrestrial ecosystems, with their accumulation in agricultural fields influencing soil greenhouse gas emissions. Nevertheless, the specific impact of microplastics, particularly in relation to their varying shapes, and how this effect manifests across diverse soil types, remains largely unexplored. In this study, a 56-day incubation experiment was conducted to assess the influence of microplastic shapes (fibers, films, and spheres) on CO2 and N2O emissions in three types of soils (Chernozems, Luvisols, and Ferralsols), while also investigating potential associations with the compositional and functional characteristics of soil bacterial communities. When compared to the control group, the introduction of microplastic fibers resulted in an increase of 21.7 % in cumulative CO2 emissions and a 31.4 % rise in cumulative N2O emissions in Ferralsols. This increase was closely linked to the proliferation of the Actinobacteria and Bacilli classes and the orders of Catenulisporales, Bacillales, Streptomycetales, Micrococcales, and Burkholderiales within the bacterial communities of Ferralsols, alongside an observed elevation in N-acetyl-glucosaminidase enzyme activity. The inclusion of microplastic fibers did not result in significant alterations in greenhouse gas emissions within Chernozems and Luvisols. This is likely attributed to the inherent buffering capacity of these soils, which helps stabilize substrate and nutrient availability for microbial communities. These findings highlight that the response of greenhouse gas emissions to microplastic additions is contingent upon the shape of the microplastics and the specific soil types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call