Abstract
Microplastics have become omnipresent in the environment, including the air we inhale, the water we consume, and the food we eat. Despite limited research, the accumulation of microplastics within the human respiratory system has garnered considerable interest because of its potential implications for health. This review offers a comprehensive examination of the impacts stemming from the accumulation of microplastics on human lung airways and explores the computational benefits and challenges associated with studying this phenomenon. The existence of microplastics in the respiratory system can lead to a range of adverse effects. Research has indicated that microplastics can induce inflammation, oxidative stress, and impaired lung function. Furthermore, the small size of microplastics allows them to penetrate deep into the lungs, reaching the alveoli, where gas exchange takes place. This raises concerns about long-term health consequences, such as the development of respiratory diseases and the potential for translocation to other organs. Computational approaches have been instrumental in understanding the impact of microplastic deposition on human lung airways. Computational models and simulations enable the investigation of particle dynamics, deposition patterns, and interaction mechanisms at various levels of complexity. However, studying microplastics in the lung airways using computational methods presents several challenges. The complex anatomy and physiological processes of the respiratory system require accurate representation in computational models. Obtaining relevant data for model validation and parameterization remains a significant hurdle. Additionally, the diverse nature of microplastics, including variations in size, shape, and chemical composition, poses challenges in capturing their full range of behaviours and potential toxicological effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.