Abstract

Surface texturing is considered to be a promising method to improve the tribological properties. Depending upon the experimental conditions, the effect of texturing varies from favourable to unnoticeable to detrimental. In this work, surfaces with micropillars are studied under elastic dry reciprocating contact. An array of micropillars with different pillar heights are generated on stainless steel using wire-cut electrical discharge machining. The effect of stiffness of the micropillars on friction is investigated, keeping the number of micropillars in contact with a flat aluminium alloy (Al6061) slider and contact geometry constant. Reciprocating experiments are carried out against a flat surface such that about 81 micropillars are in contact. From the experimental results, it is found that the coefficient of friction is independent of the stiffness of the texture elements. However, work done per cycle significantly varied with the stiffness of texture element and applied normal load. A lumped system model with Coulomb friction shows that the work done per cycle varies quadratically with the normal load. The experimental results agree with this simplified model except in the incipient sliding regime. These results show how the work done per cycle varies, for different contact stiffness under elastic contact even though the coefficient of friction remains constant. The implication of this study for a macroscopic measured coefficient of friction as a function of microscopic asperity level friction is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.