Abstract

The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call