Abstract

The influence of incremental hydration (≤4) on the electronic resonances of the pyrene anion is studied using two-dimensional photoelectron spectroscopy. The photoexcitation energies of the resonances do not change; therefore, from the anion’s perspective, the resonances remain the same, but from the neutral’s perspective of the electron–molecule reaction, the resonances decrease in energy by the binding energy of the water molecules. The autodetachment of the resonances shows that hydration has very little effect, showing that even the dynamics of most of the resonances are not impacted by hydration. Two specific resonances do show changes that are explained by the closing of specific autodetachment channels. The lowest-energy resonance leads to efficient electron capture as observed through thermionic emission and evaporation of water molecules (dissociative electron attachment). The implications of low-energy electron capture in dense molecular interstellar clouds are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.