Abstract

The purpose of this study was to examine the expression of nuclear and mitochondrial genes in cardiac and skeletal muscle (triceps brachii) in response to short-duration microgravity exposure. Six adult male rats were exposed to microgravity for 6 days and were compared with six ground-based control animals. We observed a significant 32% increase in heart malate dehydrogenase (MDH) enzyme activity, which was accompanied by a 62% elevation in heart MDH mRNA levels after microgravity exposure. Despite modest elevations in the mRNAs encoding subunits III, IV, and VIc as well as a 2.2-fold higher subunit IV protein content after exposure to microgravity, heart cytochrome c oxidase (CytOx) enzyme activity remained unchanged. In skeletal muscle, MDH expression was unaffected by microgravity, but CytOx activity was significantly reduced 41% by microgravity, whereas subunit III, IV, and VIc mRNA levels and subunit IV protein levels were unaltered. Thus tissue-specific (i.e., heart vs. skeletal muscle) differences exist in the regulation of nuclear-encoded mitochondrial proteins in response to microgravity. In addition, the expression of nuclear-encoded proteins such as CytOx subunit IV and expression of MDH are differentially regulated within a tissue. Our data also illustrate that the heart undergoes previously unidentified mitochondrial adaptations in response to short-term microgravity conditions more dramatic than those evident in skeletal muscle. Further studies evaluating the functional consequences of these adaptations in the heart, as well as those designed to measure protein turnover, are warranted in response to microgravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call