Abstract

The flow boiling phenomenon of liquid hydrogen (LH2) during transportation in microgravity is very different from that under terrestrial condition. In this study, a saturated flow boiling of LH2 in a horizontal tube has been simulated under microgravity condition using coupled level-set and volume of fluid method. The validation of the developed model shows good agreement with the experimental data from the literature. The changes of heat fluxes and pressure drops under different gravitational accelerations were analyzed. And, the variation of heat fluxes with different wall superheat and contact angle were compared between microgravity (10−4g) and normal gravity (1g) condition. Also, the influence of surface tension were studied under microgravity. The numerical results indicate that the heat flux decrease with the decrement of gravitational acceleration. And the heat transfer ratio decrease with the increment of wall superheat in the nucleate boiling regime. The heat transfer slightly reduce when considering surface tension. In addition, the changes of contact angle have a more significant impact on heat transfer under microgravity condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.