Abstract

Crosslinked polyacrylonitrile (cPAN) particles with uniform size were synthesized through precipitation polymerization. The as-formed cPAN nanoparticles were dispersed in polyacrylonitrile (PAN) solutions to form microgels with various contents, which were used as model to study the influence of the microgels on the shear and extensional rheology of PAN solutions. Flow curves of steady shear viscosity displayed shear thinning and followed time–temperature superposition principle. The dependency of activation energy on the content of cPAN microgels indicated that introduction of microgels weakened the temperature sensitivity of PAN solutions. For extensional rheology study, we utilized the capillary thinning rheometry to characterize the elongation relaxation time and apparent extensional viscosity. Study of filament thinning dynamics with a series of system strains confirmed that the higher content of cPAN microgels the lower extensional strength and worse spinnability of the PAN solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call