Abstract
The time-averaged velocity and turbulence intensity distributions were measured by a laser Doppler velocimeter in a turbulent boundary layer filled with microbubbles. The void fraction distribution was also measured using a fiber-optic probe. The velocity decreased in the region below 100 wall units with an increase in bubble density. This led to a decrease in the velocity gradient at the wall, which was consistent with a decrease in shearing stress on the wall. The turbulence intensity in the buffer layer increased at a low microbubble density, and then began to decrease with an increasing microbubble density. Based on the present measurements, the mechanism of turbulence reduction by microbubbles is discussed and a model is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.