Abstract

Magnesium alloys are newly promising biomaterials with potential application of human bone replacement. However, there is a drawback due to their high corrosion rates. In this study, AZ31 magnesium alloys were coated using microarc oxidation (MAO) process. Two oxidation durations, 1minute and 5minutes, were used. The samples were immersed in the simulated body fluid (SBF) for up to seven days. Then the electrochemical behaviors of the two samples were comparatively investigated. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) experiments were used. The results show that the 5-minute MAO coated sample had a better corrosion resistance than the 1-minute MAO coated sample. The study shows processing parameters, e.g., oxidation time, can be used to design an optimized MAO-coated magnesium alloy with controlled corrosion rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.