Abstract

A light-emitting diode (LED) structure containing a low-temperature (LT) GaN interlayer between active region and AlGaN electron blocking layer is proposed to improve the performance of InGaN-based green LEDs. The experimental and simulated results show that, as the Mg doping depth in the LT-GaN interlayer increases, the hole injection efficiency gets improved and electron current leakage decreases, while defect-related nonradiative recombination increases. With an optimized Mg doping depth in the LT-GaN interlayer, a substantial suppression of efficiency droop can be achieved compared with the conventional LED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call