Abstract

The undoped and magnesium (Mg)-doped Tin (IV) oxide (SnO2) thin films were grown on glass substrate by spray pyrolysis technique. In order to observe the effect on the optical, structural, morphological, and hydrogen (H2) gas answer properties of SnO2 by Mg doping, X-ray diffractometer (XRD), ultraviolet–visible (UV) spectrometer, scanning electron microscope (SEM) and hydrogen (H2) gas, measurements were taken. The absorption measurements of undoped and Mg-doped SnO2 thin films demonstrated that band gaps varied with the changing Mg dopant ratio and this variation may be from Burstein–Moss (BM) effect. XRD measurements showed that the samples were tetragonal structures and have (110), (101), (200), (211), (220), (310) planes. The surface morphology of SnO2 showed that samples was affected considerably by Mg dopant. The H2 gas sensor response improves with the increase of 1%, 2% and 3% Mg doping ratio in SnO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.