Abstract

MgZnO/ZnO bilayers (Mg concentration of ∼30%) have been grown and subsequently annealed at different temperatures in the range of 600–900 °C with the specific interest of studying the effect of inter-diffusion of Mg on the photoluminescence (PL) properties of the bilayers. The influence of Mg diffusion and material homogenization is evaluated through absorption, PL, and secondary ion mass spectrometry (SIMS) measurements. No appreciable change in the spectral positions is seen either in PL or absorption up to an annealing temperature of 700 °C, which is also supported by SIMS. However at higher annealing temperatures, diffusion of Mg into the ZnO layer is clearly evident in SIMS profile, which results in the red-shift (blue-shift) of spectral positions of MgZnO (ZnO) layer, respectively. Finally, for the sample annealed at 900 °C, the two layers are completely merged providing a single peak at ∼3.60 eV in PL/absorption corresponding to a completely homogenized MgZnO layer. Spectroscopic results are corroborated by the numerical simulations based on a simple theoretical model, which correlates the observed PL spectra of the heterostructures with the experimental Mg diffusion profiles across the heterointerface, as measured by SIMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.