Abstract

Mg x Zn1−x O:Al (0 ≤ x ≤ 0.6) UV transparent conducting films were deposited on quartz glass by radio frequency magnetron sputtering. Effect of Mg content on structure, optical and electrical properties of Mg x Zn1−x O:Al films was investigated. There is a single phase of basic wurtzite structure of ZnO in Mg x Zn1−x O:Al films at x ≤ 0.4, and of a basic structure of cubic structure of MgO at x ≥ 0.6. The band gap can be varied from 3.27 to 5.90 eV by controlling Mg contents. The resistivity of Mg x Zn1−x O:Al films increase with increasing Mg content x due to the decrease of Al-doping efficiency. The electrical conduction of Mg x Zn1−x O:Al films can be markedly improved by increasing the Al-doping level appropriately and annealing in argon atmosphere at over 500 °C. The maximum band gap of Mg x Zn1−x O:Al films with wurtzite structure was found to be 5.35 eV when Mg content x is 0.4, and the minimum resistivity of 5.4 × 10−4 Ω cm was obtained when the Al/(Zn + Mg + Al) is 0.03 and the annealing temperature is over 500 °C. The average transmittance of Mg x Zn1−x O:Al films was higher than 86% in the wavelength region from 300 (x ≥ 0.4) to 800 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.