Abstract
PurposePaper aims to an alloy development study was carried out to increase the mechanical properties of cylinder heads.Design/methodology/approachAlSi12 alloys are used to manufacture the compressor head cylinder by high-pressure casting for easy casting and superior properties. Therefore, 1.1%, 2.4% and 3.1% Mg were added to AlSi12. The microstructures of the produced samples were characterized by optical microscope, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction methods. Hardness and tensile tests as well as Charpy impact tests were performed. Wear tests were also carried out on the pin-on disc tester, and then the wear performance was examined on the tester, which simulates the actual operating condition.FindingsAlSi12 has primary Si and eutectic Si in the Al matrix. However, alloys of Mg with AlSi12 have other intermetallics such as Mg2Si and ß-Fe, as well as primary Si and eutectic Si. Hardness and tensile strength as well as improved wear performance with increased Mg content.Originality/valueIn this study, wear performance test to simulate the operation of the cylinder head produced by high pressure casting from AlSi12 alloy moreover tensile test, hardness test and impact test were performed. Therefore, in this study, the wear performance of the compressor head produced by high-pressure casting method by adding three different amounts of Mg to AlSi12 alloy was investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Industrial Lubrication and Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.