Abstract

Hepatic injury has been reported to be associated with chloroquine therapy. Gomphrena celesioides has been claimed to have pleiotropic protective properties in the liver by traditional herbal practitioner but there is no scientific evidence to this claim. This investigation therefore sought to evaluate the effect of Gomphrena celesioides administration on chloroquine-induced hepatic injury in rats. Forty adult male rats were divided into five groups of eight rats and were treated orally once daily. Rats in group one received 1 ml/kg body weight of 0.9% normal saline; rats in group two received 250 mg/kg body weight of chloroquine for three days; groups three, four and five rats were pre-treated with 200 mg/kg, 400 mg/kg and 800 mg/kg body weight of methanol extract of Gomphrena celesiodes for three days and on the fourth day were given 250 mg/kg body weight of chloroquine for three days. The experiment lasted for seven days. Liver injury was manifested biochemically by a significant increase in serum level or activities of hepatic markers (aminotransferases, alkaline phosphate, bilirubin, cholesterol and gamma glutamyl transferase). In addition, hepatic tissue from chloroquine-treated rats showed a significant increase in lipid peroxidation with a decrease in hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reservoirs. Moreover, the liver histopathologic evaluation revealed significant in chloroquine-treated rats. Gomphrena celesioides administration significantly alleviated chloroquine-induced pathologic changes in serum biochemistry and liver tissue. The results also suggest that Gomphrena celesioides possesses protective properties against chloroquine-induced liver injury via mitigation of drug-induced oxidative stress and its consequent events.

Highlights

  • Liver is a vital organ of the body and plays a crucial role in regulating the various physiological processes of human body and plays a magnificent role in the metabolism of endogenous and exogenous agents including detoxification and removal of toxic wastes from the body [1]

  • Ellman’s Reagent [5’-5’-dithiobis-(2-dinitrobenzoic acid), DNTB], sulphosalicylic acid, epinephrine, Folin-Ciocalteau reagent, Bovine serum albumin (BSA), trichloroacetic acid (TCA), thiobarbituric acid (TBA), reduced glutathione,1-chloro-2, 4-dinitrobenzene were supplied by Sigma-Aldrich® (USA), alanine aminotransferase (ALT) kit, aspartate aminotransferase (AST) kit, alkaline phosphates (ALP) kit, bilirubin kit, cholesterol kit, gamma glutaryl tranferase kit were from Randox Laboratories Limited, UK

  • Results of this study showed that administration of chloroquine at a dose of 250 mg/kg body weight to Wistar rats caused a significant increase in the activities of all the hepatic enzymes estimated as well as the concentrations of both total and direct bilirubin and the cholesterol in the serum when compared with the normal control rats

Read more

Summary

Introduction

Liver is a vital organ of the body and plays a crucial role in regulating the various physiological processes of human body and plays a magnificent role in the metabolism of endogenous and exogenous agents including detoxification and removal of toxic wastes from the body [1]. Uncontrolled consumption of alcohol, various infections and some autoimmune disorders can facilitate hepatic damage [2]. These hepatotoxic agents are one of the leading causes for hepatitis, cirrhosis, liver cancer and at last death [3]. Some of the liver injuries are caused by the use and abuse of drugs. Prescription-drugs like chloroquine can cause serious side effects especially when used in excess and for prolonged periods of time [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call