Abstract
Five binary formulations were prepared from methyl methacrylate (MMA) and methacrylic acid (MAA) monomers, and six ternary formulations were prepared from polysols of 30% wt polymethyl methacrylate (PMMA)/MMA and MAA. Using thermal analyses (DSC and TGA) the polymerization kinetics, condition of postcuring, relative amount of residual monomers, and glass transition temperature (Tg) were determined. From bar-shaped samples, 25 × 5 × 0.9 mm in dimensions, mechanical properties [flexural moduli (E) and maximum strengths (σ)] were measured in three-point bending. Polymerization kinetics of binary formulations improved over pure PMMA (from 15 to 4 min) as a result of over a 60-fold increase in propagation-to-termination constants (Kp/Kt) of MAA/MMA. The further addition of PMMA increased the viscosity, slowed down termination, and, consequently, improved the polymerization kinetics twofold. These enhancements occurred without a substantive change in the Tg of the ternary system (ca. 107°C) over pure PMMA (ca. 112°C). Moreover, the Es of the four ternary formulations averaged 2.94 GPa, which was comparable with many values reported in the literature. In contrast the σs of these same formulations averaged 97 MPa, which was about 25% better than earlier investigations of pure acrylic. When a thermoplastic material is required for pultruding profiles that cure fast and have good thermal-mechanical properties, ternaries of PMMA/MMA/MAA should be considered. © 1997 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.