Abstract

The circadian clock influences nearly all aspects of metabolism. However, little is known regarding the effect of the energy status on circadian rhythms. Our aim was to test the effect of two opposing energy situations, metformin and lipid emulsion (LE), on clock and metabolic circadian expression in differentiated C2C12 myotubes. Metformin treatment led to depleted ATP levels accompanied by elevated NADH levels, whereas LE treatment led to increased ATP and NAD+ levels. Nevertheless, both LE and metformin treatments activated the AMP-activated protein kinase (AMPK) pathway. In contrast, the effect on circadian rhythms was completely different. LE led to disrupted clock and metabolic gene expression, whereas metformin led to mainly high-amplitude shifted rhythms. Combination of metformin and LE led to an antagonistic effect on circadian gene expression. Although metformin and LE have an opposing effect on circadian gene expression and on the cellular energy status, they both lead to AMPK activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.