Abstract

The objective of the current study was to synthesize a nickel based catalyst with high activity at low temperature for partial oxidation of methane (POM). Ni-nanoparticles supported on CeO2 nanoparticles were synthesized by two step preparation method. First, 30–50nm CeO2 was synthesized by solvo-thermal method and then Ni- nanoparticles were deposited over it following a newly developed procedure, where cetyltrimethylammonium bromide (CTAB) acted as morphology controlling agent and polyvinylpyrrolidone (PVP) as size controlling agent for nickel nanoparticles. The characterizations of synthesized catalysts were done by BET-Surface area, XRD, SEM, TEM, TPR, H2-chemisorpton, TGA and XPS analysis. The catalysts showed excellent coke resisting ability during POM and produces synthesis gas with H2/CO ratio almost 2. The catalyst activated methane at 400°C with 10% methane conversion and converts methane almost completely at 800°C. The catalyst showed above 98% methane conversion at 800°C during 90h of time on stream (TOS) reaction with H2/CO ratio 1.98. Average 5.5nm Ni particles, use of CeO2 as a support played a very crucial role for methane activation at such lower temperature. The synergistic effect between small Ni-nanoparticles and CeO2 nanoparticles of Ni-CeO2 catalyst is the main reason for such activity. Detailed study of other reaction parameters like temperature, Ni loading, weight hourly space velocity (WHSV) was also carried out and reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.