Abstract

Shifting products of Fischer-Tropsch Synthesis (FTS) from paraffins to value-added higher alcohols receives great attention but remains great challenge. Herein, metal oxides of Mn, Zn, La and Zr are investigated as promoters to tune the activity and product distributions of Co/AC catalyst for syngas conversion. It is found that these promoters show different promotion effect on CO dissociation rate, the formation of Co2C phase and the alcohols selectivity. The formed Co2C/Co0 constitutes the dual active site for higher alcohols synthesis. The strongest CO dissociation rate is observed for Zn-promoted Co/AC catalyst, resulting in the highest activity and space-time yield (STY) of alcohols. The Mn promoter is most conducive to the formation of Co2C, but slightly decreases the activity. The similar CO dissociation rate and CO conversion are obtained over both Zr- and La-promoted Co/AC catalysts, but the Zr-promoted Co/AC catalyst exhibits the highest alcohols selectivity due to the function balance between CO non-dissociative insertion and CO dissociation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call