Abstract
The miscibility and thermal degradation of blends of poly(bisphenol A carbonate) (PBC) with poly(vinyl chloride) (PVC) have been studied in inert atmosphere by a differential thermal/thermogravimetry analyzer. The blend showed a single glass transition temperature consistent with the Fox equation prediction suggesting the complete miscibility of the polymers. In the degradation of binary blend, PVC is stabilized slightly while PBC is destabilized significantly. Fourier transform infrared studies of the blend showed the presence of chlorine even after the dehydrochlorination stage. Thus, chlorine radicals or hydrogen chloride formed during the dehydrochlorination of PVC migrates and abstracts hydrogen from the PBC leading to the destabilization. The degradation of polymers with various metal oxides such as $ZnO, Fe_2O_3, Co_3O_4, and TiO_2$ and metal chlorides such as $AlCl_3, ZnCl_2, FeCl_3, and CoCl_2$ was studied. Experimental data indicate that the increased degradation of the polymer blend in the presence of metal oxides is due to the formation of metal chlorides during the dehydrochlorination of PVC. These results indicate the high reactivity of chlorine radical or hydrogen chloride formed leading to the destabilization of polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.