Abstract

The effect of metal oxides on the ability of persulfate (PS) with Fe(II) to remediate diesel-contaminated soil was investigated. In both natural soil and purchased sand, the highest diesel degradation occurred at pH 3 and the optimum molar ratio of PS/Fe(II) was 100:1 (i.e. 500 mM PS to 5 mM Fe(II)). Moreover, adding Fe(II) increased PS reactivity more in soil than it did in sand, indicating the involvement of metal oxides in the soil matrix. Evaluating the effects of metal oxides (i.e. goethite, hematite, magnetite, and manganese oxide) on the reactivity of PS with/without Fe(II) in a system containing diesel-contaminated sand revealed that manganese oxide increased PS activity the most and that the highest diesel degradation by PS occurred when both manganese oxide and Fe(II) were used as activators. XRD did not show the transformation of manganese oxide in the presence of Fe(II). SEM-EDS showed the association of Fe(II) on the surface of manganese oxide, and ICP analysis revealed that almost all the added Fe(II) adsorbed to manganese oxide but almost none adsorbed to iron oxides under acidic conditions. Therefore, the high reactivity of PS could be due to the high density of Fe(II) over the surface of manganese oxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.