Abstract
Many studies have studied biochar immobilizing chromium (Cr) in soil. However, few studies were conducted to reduce the environmental risks due to biochar aging in soil. In this study, we adopt FeCl3, MgCl2, and AlCl3 to activate sewage sludge to form modified biochar and produce biochar tubules. Then, the column experiments were carried out to study the effect of fluctuating groundwater table on Cr leaching behavior, total Cr, and fractions distribution with the insertion of biochar tubule. Results showed that the Cr immobilization performance was improved by metal-modification biochar, the biochar tubules can significantly decrease the Cr leaching amounts, retard the Cr downward migration in the soil, and there was a better effect with slightly Cr-contaminated soil. In addition, the immobilization effect is also impacted by the biochar's application mode and the hydrodynamic conditions. Detailedly, the Cr leaching amounts maximally decreased by 33.39%, the residual amounts maximally increased by 10.05% in the soil column, and the exchangeable (EX) and carbonates-bound (CB) fractions were maximally increased by 85.18%, 151.78% at the equal depth of soil column, respectively. BET, SEM-EDS, XRD, and FTIR analyses revealed that biochars' immobilization mechanisms on Cr involved reduction(predominately), physisorption, precipitation, and complexation. Risk assessment demonstrated that the sewage sludge biochar has very low environmental risk. This study indicates that the biochar tubule applied to immobilize Cr in soil has potential and provides new insights into reducing environmental risks due to biochar aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.